Collections: - Name: Libra R-CNN Metadata: Training Data: COCO Training Techniques: - IoU-Balanced Sampling - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - Balanced Feature Pyramid Paper: URL: https://arxiv.org/abs/1904.02701 Title: 'Libra R-CNN: Towards Balanced Learning for Object Detection' README: configs/libra_rcnn/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/necks/bfp.py#L10 Version: v2.0.0 Models: - Name: libra-faster-rcnn_r50_fpn_1x_coco In Collection: Libra R-CNN Config: configs/libra_rcnn/libra-faster-rcnn_r50_fpn_1x_coco.py Metadata: Training Memory (GB): 4.6 inference time (ms/im): - value: 52.63 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.3 Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth - Name: libra-faster-rcnn_r101_fpn_1x_coco In Collection: Libra R-CNN Config: configs/libra_rcnn/libra-faster-rcnn_r101_fpn_1x_coco.py Metadata: Training Memory (GB): 6.5 inference time (ms/im): - value: 69.44 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 40.1 Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203-8dba6a5a.pth - Name: libra-faster-rcnn_x101-64x4d_fpn_1x_coco In Collection: Libra R-CNN Config: configs/libra_rcnn/libra-faster-rcnn_x101-64x4d_fpn_1x_coco.py Metadata: Training Memory (GB): 10.8 inference time (ms/im): - value: 117.65 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315-3a7d0488.pth - Name: libra-retinanet_r50_fpn_1x_coco In Collection: Libra R-CNN Config: configs/libra_rcnn/libra-retinanet_r50_fpn_1x_coco.py Metadata: Training Memory (GB): 4.2 inference time (ms/im): - value: 56.5 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 37.6 Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205-804d94ce.pth