_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth' # noqa model = dict( type='KnowledgeDistillationSingleStageDetector', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), teacher_config='configs/gfl/gfl_r101_fpn_ms-2x_coco.py', teacher_ckpt=teacher_ckpt, backbone=dict( type='ResNet', depth=18, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict( type='FPN', in_channels=[64, 128, 256, 512], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LDHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25), loss_ld=dict( type='KnowledgeDistillationKLDivLoss', loss_weight=0.25, T=10), reg_max=16, loss_bbox=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))