Models: - Name: faster-rcnn_hrnetv2p-w18-1x_coco In Collection: Faster R-CNN Config: configs/hrnet/faster-rcnn_hrnetv2p-w18-1x_coco.py Metadata: Training Memory (GB): 6.6 inference time (ms/im): - value: 74.63 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 36.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: faster-rcnn_hrnetv2p-w18-2x_coco In Collection: Faster R-CNN Config: configs/hrnet/faster-rcnn_hrnetv2p-w18-2x_coco.py Metadata: Training Memory (GB): 6.6 inference time (ms/im): - value: 74.63 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731-a4ec0611.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: faster-rcnn_hrnetv2p-w32-1x_coco In Collection: Faster R-CNN Config: configs/hrnet/faster-rcnn_hrnetv2p-w32-1x_coco.py Metadata: Training Memory (GB): 9.0 inference time (ms/im): - value: 80.65 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 40.2 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130-6e286425.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: faster-rcnn_hrnetv2p-w32_2x_coco In Collection: Faster R-CNN Config: configs/hrnet/faster-rcnn_hrnetv2p-w32_2x_coco.py Metadata: Training Memory (GB): 9.0 inference time (ms/im): - value: 80.65 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927-976a9c15.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: faster-rcnn_hrnetv2p-w40-1x_coco In Collection: Faster R-CNN Config: configs/hrnet/faster-rcnn_hrnetv2p-w40-1x_coco.py Metadata: Training Memory (GB): 10.4 inference time (ms/im): - value: 95.24 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.2 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210-95c1f5ce.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: faster-rcnn_hrnetv2p-w40_2x_coco In Collection: Faster R-CNN Config: configs/hrnet/faster-rcnn_hrnetv2p-w40_2x_coco.py Metadata: Training Memory (GB): 10.4 inference time (ms/im): - value: 95.24 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.1 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033-0f236ef4.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: mask-rcnn_hrnetv2p-w18-1x_coco In Collection: Mask R-CNN Config: configs/hrnet/mask-rcnn_hrnetv2p-w18-1x_coco.py Metadata: Training Memory (GB): 7.0 inference time (ms/im): - value: 85.47 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 37.7 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 34.2 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205-1c3d78ed.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: mask-rcnn_hrnetv2p-w18-2x_coco In Collection: Mask R-CNN Config: configs/hrnet/mask-rcnn_hrnetv2p-w18-2x_coco.py Metadata: Training Memory (GB): 7.0 inference time (ms/im): - value: 85.47 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 39.8 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 36.0 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212-b3c825b1.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: mask-rcnn_hrnetv2p-w32-1x_coco In Collection: Mask R-CNN Config: configs/hrnet/mask-rcnn_hrnetv2p-w32-1x_coco.py Metadata: Training Memory (GB): 9.4 inference time (ms/im): - value: 88.5 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.2 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 37.1 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207-b29f616e.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: mask-rcnn_hrnetv2p-w32-2x_coco In Collection: Mask R-CNN Config: configs/hrnet/mask-rcnn_hrnetv2p-w32-2x_coco.py Metadata: Training Memory (GB): 9.4 inference time (ms/im): - value: 88.5 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.5 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 37.8 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213-45b75b4d.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: mask-rcnn_hrnetv2p-w40_1x_coco In Collection: Mask R-CNN Config: configs/hrnet/mask-rcnn_hrnetv2p-w40_1x_coco.py Metadata: Training Memory (GB): 10.9 Epochs: 12 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.1 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 37.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646-66738b35.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: mask-rcnn_hrnetv2p-w40-2x_coco In Collection: Mask R-CNN Config: configs/hrnet/mask-rcnn_hrnetv2p-w40-2x_coco.py Metadata: Training Memory (GB): 10.9 Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.8 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 38.2 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732-aed5e4ab.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: cascade-rcnn_hrnetv2p-w18-20e_coco In Collection: Cascade R-CNN Config: configs/hrnet/cascade-rcnn_hrnetv2p-w18-20e_coco.py Metadata: Training Memory (GB): 7.0 inference time (ms/im): - value: 90.91 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.2 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210-434be9d7.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: cascade-rcnn_hrnetv2p-w32-20e_coco In Collection: Cascade R-CNN Config: configs/hrnet/cascade-rcnn_hrnetv2p-w32-20e_coco.py Metadata: Training Memory (GB): 9.4 inference time (ms/im): - value: 90.91 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 43.3 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208-928455a4.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: cascade-rcnn_hrnetv2p-w40-20e_coco In Collection: Cascade R-CNN Config: configs/hrnet/cascade-rcnn_hrnetv2p-w40-20e_coco.py Metadata: Training Memory (GB): 10.8 Epochs: 20 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 43.8 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112-75e47b04.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: cascade-mask-rcnn_hrnetv2p-w18_20e_coco In Collection: Cascade R-CNN Config: configs/hrnet/cascade-mask-rcnn_hrnetv2p-w18_20e_coco.py Metadata: Training Memory (GB): 8.5 inference time (ms/im): - value: 117.65 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.6 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 36.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210-b543cd2b.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: cascade-mask-rcnn_hrnetv2p-w32_20e_coco In Collection: Cascade R-CNN Config: configs/hrnet/cascade-mask-rcnn_hrnetv2p-w32_20e_coco.py Metadata: inference time (ms/im): - value: 120.48 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 44.3 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 38.6 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043-39d9cf7b.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: cascade-mask-rcnn_hrnetv2p-w40-20e_coco In Collection: Cascade R-CNN Config: configs/hrnet/cascade-mask-rcnn_hrnetv2p-w40-20e_coco.py Metadata: Training Memory (GB): 12.5 Epochs: 20 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 45.1 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 39.3 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922-969c4610.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: htc_hrnetv2p-w18_20e_coco In Collection: HTC Config: configs/hrnet/htc_hrnetv2p-w18_20e_coco.py Metadata: Training Memory (GB): 10.8 inference time (ms/im): - value: 212.77 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.8 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 37.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210-b266988c.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: htc_hrnetv2p-w32_20e_coco In Collection: HTC Config: configs/hrnet/htc_hrnetv2p-w32_20e_coco.py Metadata: Training Memory (GB): 13.1 inference time (ms/im): - value: 204.08 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 45.4 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 39.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207-7639fa12.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: htc_hrnetv2p-w40_20e_coco In Collection: HTC Config: configs/hrnet/htc_hrnetv2p-w40_20e_coco.py Metadata: Training Memory (GB): 14.6 Epochs: 20 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 46.4 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 40.8 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411-417c4d5b.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: fcos_hrnetv2p-w18-gn-head_4xb4-1x_coco In Collection: FCOS Config: configs/hrnet/fcos_hrnetv2p-w18-gn-head_4xb4-1x_coco.py Metadata: Training Resources: 4x V100 GPUs Batch Size: 16 Training Memory (GB): 13.0 inference time (ms/im): - value: 77.52 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 35.3 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710-4ad151de.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: fcos_hrnetv2p-w18-gn-head_4xb4-2x_coco In Collection: FCOS Config: configs/hrnet/fcos_hrnetv2p-w18-gn-head_4xb4-2x_coco.py Metadata: Training Resources: 4x V100 GPUs Batch Size: 16 Training Memory (GB): 13.0 inference time (ms/im): - value: 77.52 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.2 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110-5c575fa5.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco In Collection: FCOS Config: configs/hrnet/fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py Metadata: Training Resources: 4x V100 GPUs Batch Size: 16 Training Memory (GB): 17.5 inference time (ms/im): - value: 77.52 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 39.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730-cb8055c0.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: fcos_hrnetv2p-w32-gn-head_4xb4-2x_coco In Collection: FCOS Config: configs/hrnet/fcos_hrnetv2p-w32-gn-head_4xb4-2x_coco.py Metadata: Training Resources: 4x V100 GPUs Batch Size: 16 Training Memory (GB): 17.5 inference time (ms/im): - value: 77.52 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 40.8 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133-77b6b9bb.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: fcos_hrnetv2p-w18-gn-head_ms-640-800-4xb4-2x_coco In Collection: FCOS Config: configs/hrnet/fcos_hrnetv2p-w18-gn-head_ms-640-800-4xb4-2x_coco.py Metadata: Training Resources: 4x V100 GPUs Batch Size: 16 Training Memory (GB): 13.0 inference time (ms/im): - value: 77.52 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.3 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651-441e9d9f.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: fcos_hrnetv2p-w32-gn-head_ms-640-800-4xb4-2x_coco In Collection: FCOS Config: configs/hrnet/fcos_hrnetv2p-w32-gn-head_ms-640-800-4xb4-2x_coco.py Metadata: Training Resources: 4x V100 GPUs Batch Size: 16 Training Memory (GB): 17.5 inference time (ms/im): - value: 80.65 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846-b6f2b49f.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0 - Name: fcos_hrnetv2p-w40-gn-head_ms-640-800-4xb4-2x_coco In Collection: FCOS Config: configs/hrnet/fcos_hrnetv2p-w40-gn-head_ms-640-800-4xb4-2x_coco.py Metadata: Training Resources: 4x V100 GPUs Batch Size: 16 Training Memory (GB): 20.3 inference time (ms/im): - value: 92.59 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Architecture: - HRNet Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752-f22d2ce5.pth Paper: URL: https://arxiv.org/abs/1904.04514 Title: 'Deep High-Resolution Representation Learning for Visual Recognition' README: configs/hrnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 Version: v2.0.0