_base_ = '../fast_rcnn/fast-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), roi_head=dict( bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))), # model training and testing settings train_cfg=dict( rcnn=dict( assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6), sampler=dict(num=256))), test_cfg=dict(rcnn=dict(score_thr=1e-3))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=300), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=None), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img', 'proposals']), ]) ] # TODO: support loading proposals data = dict( train=dict( proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_train2017.pkl', pipeline=train_pipeline), val=dict( proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline), test=dict( proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline)) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))