_base_ = './faster-rcnn_r50_fpn_gn-ws-all_1x_coco.py' conv_cfg = dict(type='ConvWS') norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch', conv_cfg=conv_cfg, norm_cfg=norm_cfg, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://jhu/resnext101_32x4d_gn_ws')))