# FreeAnchor > [FreeAnchor: Learning to Match Anchors for Visual Object Detection](https://arxiv.org/abs/1909.02466) ## Abstract Modern CNN-based object detectors assign anchors for ground-truth objects under the restriction of object-anchor Intersection-over-Unit (IoU). In this study, we propose a learning-to-match approach to break IoU restriction, allowing objects to match anchors in a flexible manner. Our approach, referred to as FreeAnchor, updates hand-crafted anchor assignment to "free" anchor matching by formulating detector training as a maximum likelihood estimation (MLE) procedure. FreeAnchor targets at learning features which best explain a class of objects in terms of both classification and localization. FreeAnchor is implemented by optimizing detection customized likelihood and can be fused with CNN-based detectors in a plug-and-play manner. Experiments on COCO demonstrate that FreeAnchor consistently outperforms their counterparts with significant margins.
## Results and Models | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download | | :---------: | :-----: | :-----: | :------: | :------------: | :----: | :----------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | R-50 | pytorch | 1x | 4.9 | 18.4 | 38.7 | [config](./freeanchor_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco/retinanet_free_anchor_r50_fpn_1x_coco_20200130-0f67375f.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco/retinanet_free_anchor_r50_fpn_1x_coco_20200130_095625.log.json) | | R-101 | pytorch | 1x | 6.8 | 14.9 | 40.3 | [config](./freeanchor_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco/retinanet_free_anchor_r101_fpn_1x_coco_20200130-358324e6.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco/retinanet_free_anchor_r101_fpn_1x_coco_20200130_100723.log.json) | | X-101-32x4d | pytorch | 1x | 8.1 | 11.1 | 41.9 | [config](./freeanchor_x101-32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco/retinanet_free_anchor_x101_32x4d_fpn_1x_coco_20200130-d4846968.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco/retinanet_free_anchor_x101_32x4d_fpn_1x_coco_20200130_095627.log.json) | **Notes:** - We use 8 GPUs with 2 images/GPU. - For more settings and models, please refer to the [official repo](https://github.com/zhangxiaosong18/FreeAnchor). ## Citation ```latex @inproceedings{zhang2019freeanchor, title = {{FreeAnchor}: Learning to Match Anchors for Visual Object Detection}, author = {Zhang, Xiaosong and Wan, Fang and Liu, Chang and Ji, Rongrong and Ye, Qixiang}, booktitle = {Neural Information Processing Systems}, year = {2019} } ```