_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] norm_cfg = dict(type='BN', requires_grad=True) image_size = (640, 640) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] model = dict( data_preprocessor=dict(pad_size_divisor=64, batch_augments=batch_augments), backbone=dict(norm_cfg=norm_cfg, norm_eval=False), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, norm_cfg=norm_cfg, num_outs=5), roi_head=dict( bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) dataset_type = 'CocoDataset' data_root = 'data/coco/' train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, allow_negative_crop=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=image_size, keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # learning policy max_epochs = 50 train_cfg = dict(max_epochs=max_epochs, val_interval=2) param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[30, 40], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001), paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True), clip_grad=None) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)