_base_ = './fovea_r50_fpn_4xb4-1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( with_deform=True, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))) # learning policy max_epochs = 24 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)