Collections: - Name: Deformable Convolutional Networks Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - Deformable Convolution Paper: URL: https://arxiv.org/abs/1703.06211 Title: "Deformable Convolutional Networks" README: configs/dcn/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/dcn/deform_conv.py#L15 Version: v2.0.0 Models: - Name: faster-rcnn_r50_fpn_dconv_c3-c5_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/faster-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 4.0 inference time (ms/im): - value: 56.18 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.3 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth - Name: faster-rcnn_r50_fpn_dpool_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/faster-rcnn_r50_fpn_dpool_1x_coco.py Metadata: Training Memory (GB): 5.0 inference time (ms/im): - value: 58.14 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dpool_1x_coco/faster_rcnn_r50_fpn_dpool_1x_coco_20200307-90d3c01d.pth - Name: faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 6.0 inference time (ms/im): - value: 80 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-1377f13d.pth - Name: faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 7.3 inference time (ms/im): - value: 100 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 44.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco_20200203-4f85c69c.pth - Name: mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 4.5 inference time (ms/im): - value: 64.94 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.8 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 37.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200203-4d9ad43b.pth - Name: mask-rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_amp-1x_coco.py Metadata: Training Techniques: - SGD with Momentum - Weight Decay - Mixed Precision Training Training Memory (GB): 3.0 Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.9 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 37.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247-c06429d2.pth - Name: mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 6.5 inference time (ms/im): - value: 85.47 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 43.5 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 38.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200216-a71f5bce.pth - Name: cascade-rcnn_r50_fpn_dconv_c3-c5_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/cascade-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 4.5 inference time (ms/im): - value: 68.49 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 43.8 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-2f1fca44.pth - Name: cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 6.4 inference time (ms/im): - value: 90.91 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 45.0 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-3b2f0594.pth - Name: cascade-mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/cascade-mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 6.0 inference time (ms/im): - value: 100 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 44.4 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 38.6 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200202-42e767a2.pth - Name: cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 8.0 inference time (ms/im): - value: 116.28 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 45.8 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 39.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200204-df0c5f10.pth - Name: cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco In Collection: Deformable Convolutional Networks Config: configs/dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py Metadata: Training Memory (GB): 9.2 Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 47.3 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 41.1 Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco-e75f90c8.pth