Collections: - Name: CentripetalNet Metadata: Training Data: COCO Training Techniques: - Adam Training Resources: 16x V100 GPUs Architecture: - Corner Pooling - Stacked Hourglass Network Paper: URL: https://arxiv.org/abs/2003.09119 Title: 'CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection' README: configs/centripetalnet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.5.0/mmdet/models/detectors/cornernet.py#L9 Version: v2.5.0 Models: - Name: centripetalnet_hourglass104_16xb6-crop511-210e-mstest_coco In Collection: CentripetalNet Config: configs/centripetalnet/centripetalnet_hourglass104_16xb6-crop511-210e-mstest_coco.py Metadata: Batch Size: 96 Training Memory (GB): 16.7 inference time (ms/im): - value: 270.27 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 210 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 44.8 Weights: https://download.openmmlab.com/mmdetection/v2.0/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco/centripetalnet_hourglass104_mstest_16x6_210e_coco_20200915_204804-3ccc61e5.pth