_base_ = '../common/lsj-200e_coco-detection.py' image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] model = dict( type='CenterNet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5, init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'), relu_before_extra_convs=True), bbox_head=dict( type='CenterNetUpdateHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_cls=dict( type='GaussianFocalLoss', pos_weight=0.25, neg_weight=0.75, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), ), train_cfg=None, test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004), paramwise_cfg=dict(norm_decay_mult=0.)) param_scheduler = [ dict( type='LinearLR', start_factor=0.00025, by_epoch=False, begin=0, end=4000), dict( type='MultiStepLR', begin=0, end=25, by_epoch=True, milestones=[22, 24], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)