# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import warnings from copy import deepcopy from mmengine import ConfigDict from mmengine.config import Config, DictAction from mmengine.runner import Runner from mmdet.engine.hooks.utils import trigger_visualization_hook from mmdet.evaluation import DumpDetResults from mmdet.registry import RUNNERS from mmdet.utils import setup_cache_size_limit_of_dynamo # TODO: support fuse_conv_bn and format_only def parse_args(): parser = argparse.ArgumentParser( description='MMDet test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--work-dir', help='the directory to save the file containing evaluation metrics') parser.add_argument( '--out', type=str, help='dump predictions to a pickle file for offline evaluation') parser.add_argument( '--show', action='store_true', help='show prediction results') parser.add_argument( '--show-dir', help='directory where painted images will be saved. ' 'If specified, it will be automatically saved ' 'to the work_dir/timestamp/show_dir') parser.add_argument( '--wait-time', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--tta', action='store_true') # When using PyTorch version >= 2.0.0, the `torch.distributed.launch` # will pass the `--local-rank` parameter to `tools/train.py` instead # of `--local_rank`. parser.add_argument('--local_rank', '--local-rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() # Reduce the number of repeated compilations and improve # testing speed. setup_cache_size_limit_of_dynamo() # load config cfg = Config.fromfile(args.config) cfg.launcher = args.launcher if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) cfg.load_from = args.checkpoint if args.show or args.show_dir: cfg = trigger_visualization_hook(cfg, args) if args.tta: if 'tta_model' not in cfg: warnings.warn('Cannot find ``tta_model`` in config, ' 'we will set it as default.') cfg.tta_model = dict( type='DetTTAModel', tta_cfg=dict( nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) if 'tta_pipeline' not in cfg: warnings.warn('Cannot find ``tta_pipeline`` in config, ' 'we will set it as default.') test_data_cfg = cfg.test_dataloader.dataset while 'dataset' in test_data_cfg: test_data_cfg = test_data_cfg['dataset'] cfg.tta_pipeline = deepcopy(test_data_cfg.pipeline) flip_tta = dict( type='TestTimeAug', transforms=[ [ dict(type='RandomFlip', prob=1.), dict(type='RandomFlip', prob=0.) ], [ dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction')) ], ]) cfg.tta_pipeline[-1] = flip_tta cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model) cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline # build the runner from config if 'runner_type' not in cfg: # build the default runner runner = Runner.from_cfg(cfg) else: # build customized runner from the registry # if 'runner_type' is set in the cfg runner = RUNNERS.build(cfg) # add `DumpResults` dummy metric if args.out is not None: assert args.out.endswith(('.pkl', '.pickle')), \ 'The dump file must be a pkl file.' runner.test_evaluator.metrics.append( DumpDetResults(out_file_path=args.out)) # start testing runner.test() if __name__ == '__main__': main()