# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from mmengine.config import Config, DictAction from mmengine.registry import init_default_scope from mmengine.utils import ProgressBar from mmdet.models.utils import mask2ndarray from mmdet.registry import DATASETS, VISUALIZERS from mmdet.structures.bbox import BaseBoxes def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # register all modules in mmdet into the registries init_default_scope(cfg.get('default_scope', 'mmdet')) dataset = DATASETS.build(cfg.train_dataloader.dataset) visualizer = VISUALIZERS.build(cfg.visualizer) visualizer.dataset_meta = dataset.metainfo progress_bar = ProgressBar(len(dataset)) for item in dataset: img = item['inputs'].permute(1, 2, 0).numpy() data_sample = item['data_samples'].numpy() gt_instances = data_sample.gt_instances img_path = osp.basename(item['data_samples'].img_path) out_file = osp.join( args.output_dir, osp.basename(img_path)) if args.output_dir is not None else None img = img[..., [2, 1, 0]] # bgr to rgb gt_bboxes = gt_instances.get('bboxes', None) if gt_bboxes is not None and isinstance(gt_bboxes, BaseBoxes): gt_instances.bboxes = gt_bboxes.tensor gt_masks = gt_instances.get('masks', None) if gt_masks is not None: masks = mask2ndarray(gt_masks) gt_instances.masks = masks.astype(bool) data_sample.gt_instances = gt_instances visualizer.add_datasample( osp.basename(img_path), img, data_sample, draw_pred=False, show=not args.not_show, wait_time=args.show_interval, out_file=out_file) progress_bar.update() if __name__ == '__main__': main()