# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.config import Config from mmengine.structures import InstanceData from mmdet.models.dense_heads import YOLOV3Head class TestYOLOV3Head(TestCase): def test_yolo_head_loss(self): """Tests YOLO head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] head = YOLOV3Head( num_classes=4, in_channels=[1, 1, 1], out_channels=[1, 1, 1], train_cfg=Config( dict( assigner=dict( type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0)))) head.init_weights() # YOLO head expects a multiple levels of features per image feats = [ torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in head.prior_generator.strides ] predmaps, = head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = head.loss_by_feat(predmaps, [gt_instances], img_metas) # When there is no truth, the conf loss should be nonzero but # cls loss and xy&wh loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']).item() empty_conf_loss = sum(empty_gt_losses['loss_conf']).item() empty_xy_loss = sum(empty_gt_losses['loss_xy']).item() empty_wh_loss = sum(empty_gt_losses['loss_wh']).item() self.assertGreater(empty_conf_loss, 0, 'conf loss should be non-zero') self.assertEqual( empty_cls_loss, 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_xy_loss, 0, 'there should be no xy loss when there are no true boxes') self.assertEqual( empty_wh_loss, 0, 'there should be no wh loss when there are no true boxes') # When truth is non-empty then all conf, cls loss and xywh loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = head.loss_by_feat(predmaps, [gt_instances], img_metas) one_gt_cls_loss = sum(one_gt_losses['loss_cls']).item() one_gt_conf_loss = sum(one_gt_losses['loss_conf']).item() one_gt_xy_loss = sum(one_gt_losses['loss_xy']).item() one_gt_wh_loss = sum(one_gt_losses['loss_wh']).item() self.assertGreater(one_gt_conf_loss, 0, 'conf loss should be non-zero') self.assertGreater(one_gt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(one_gt_xy_loss, 0, 'xy loss should be non-zero') self.assertGreater(one_gt_wh_loss, 0, 'wh loss should be non-zero')