# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import VFNetHead class TestVFNetHead(TestCase): def test_vfnet_head_loss(self): """Tests vfnet head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = Config( dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False)) # since VarFocal Loss is not supported on CPU vfnet_head = VFNetHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict( type='VarifocalLoss', use_sigmoid=True, loss_weight=1.0)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] cls_scores, bbox_preds, bbox_preds_refine = vfnet_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = vfnet_head.loss_by_feat(cls_scores, bbox_preds, bbox_preds_refine, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = vfnet_head.loss_by_feat(cls_scores, bbox_preds, bbox_preds_refine, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero') def test_vfnet_head_loss_without_atss(self): """Tests vfnet head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = Config( dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False)) # since VarFocal Loss is not supported on CPU vfnet_head = VFNetHead( num_classes=4, in_channels=1, train_cfg=train_cfg, use_atss=False, loss_cls=dict( type='VarifocalLoss', use_sigmoid=True, loss_weight=1.0)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] cls_scores, bbox_preds, bbox_preds_refine = vfnet_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = vfnet_head.loss_by_feat(cls_scores, bbox_preds, bbox_preds_refine, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = vfnet_head.loss_by_feat(cls_scores, bbox_preds, bbox_preds_refine, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')