# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import numpy as np import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import PAAHead, paa_head from mmdet.models.utils import levels_to_images class TestPAAHead(TestCase): def test_paa_head_loss(self): """Tests paa head loss when truth is empty and non-empty.""" class mock_skm: def GaussianMixture(self, *args, **kwargs): return self def fit(self, loss): pass def predict(self, loss): components = np.zeros_like(loss, dtype=np.long) return components.reshape(-1) def score_samples(self, loss): scores = np.random.random(len(loss)) return scores paa_head.skm = mock_skm() s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] train_cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # since Focal Loss is not supported on CPU paa = PAAHead( num_classes=4, in_channels=1, train_cfg=train_cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] paa.init_weights() cls_scores, bbox_preds, iou_preds = paa(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = paa.loss_by_feat(cls_scores, bbox_preds, iou_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] empty_iou_loss = empty_gt_losses['loss_iou'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_iou_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = paa.loss_by_feat(cls_scores, bbox_preds, iou_preds, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] onegt_iou_loss = one_gt_losses['loss_iou'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero') self.assertGreater(onegt_iou_loss.item(), 0, 'box loss should be non-zero') n, c, h, w = 10, 4, 20, 20 mlvl_tensor = [torch.ones(n, c, h, w) for i in range(5)] results = levels_to_images(mlvl_tensor) self.assertEqual(len(results), n) self.assertEqual(results[0].size(), (h * w * 5, c)) self.assertTrue(paa.with_score_voting) paa = PAAHead( num_classes=4, in_channels=1, train_cfg=train_cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)) cls_scores = [torch.ones(2, 4, 5, 5)] bbox_preds = [torch.ones(2, 4, 5, 5)] iou_preds = [torch.ones(2, 1, 5, 5)] cfg = Config( dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) rescale = False paa.predict_by_feat( cls_scores, bbox_preds, iou_preds, img_metas, cfg, rescale=rescale)