# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models.dense_heads import CentripetalHead class TestCentripetalHead(TestCase): def test_centripetal_head_loss(self): """Tests corner head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'batch_input_shape': (s, s, 3) }] centripetal_head = CentripetalHead( num_classes=4, in_channels=1, corner_emb_channels=0) # Corner head expects a multiple levels of features per image feat = [ torch.rand(1, 1, s // 4, s // 4) for _ in range(centripetal_head.num_feat_levels) ] forward_outputs = centripetal_head.forward(feat) # Test that empty ground truth encourages the network # to predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) gt_bboxes_ignore = None empty_gt_losses = centripetal_head.loss_by_feat( *forward_outputs, [gt_instances], img_metas, gt_bboxes_ignore) empty_det_loss = sum(empty_gt_losses['det_loss']) empty_guiding_loss = sum(empty_gt_losses['guiding_loss']) empty_centripetal_loss = sum(empty_gt_losses['centripetal_loss']) empty_off_loss = sum(empty_gt_losses['off_loss']) self.assertTrue(empty_det_loss.item() > 0, 'det loss should be non-zero') self.assertTrue( empty_guiding_loss.item() == 0, 'there should be no guiding loss when there are no true boxes') self.assertTrue( empty_centripetal_loss.item() == 0, 'there should be no centripetal loss when there are no true boxes') self.assertTrue( empty_off_loss.item() == 0, 'there should be no box loss when there are no true boxes') gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874], [123.6667, 123.8757, 138.6326, 251.8874]]) gt_instances.labels = torch.LongTensor([2, 3]) two_gt_losses = centripetal_head.loss_by_feat(*forward_outputs, [gt_instances], img_metas, gt_bboxes_ignore) twogt_det_loss = sum(two_gt_losses['det_loss']) twogt_guiding_loss = sum(two_gt_losses['guiding_loss']) twogt_centripetal_loss = sum(two_gt_losses['centripetal_loss']) twogt_off_loss = sum(two_gt_losses['off_loss']) assert twogt_det_loss.item() > 0, 'det loss should be non-zero' assert twogt_guiding_loss.item() > 0, 'push loss should be non-zero' assert twogt_centripetal_loss.item( ) > 0, 'pull loss should be non-zero' assert twogt_off_loss.item() > 0, 'off loss should be non-zero'