# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models.dense_heads import AutoAssignHead class TestAutoAssignHead(TestCase): def test_autoassign_head_loss(self): """Tests autoassign head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] autoassign_head = AutoAssignHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, strides=[8, 16, 32, 64, 128], loss_bbox=dict(type='GIoULoss', loss_weight=5.0), norm_cfg=None) # Fcos head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in autoassign_head.prior_generator.strides) cls_scores, bbox_preds, centernesses = autoassign_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = autoassign_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the neg loss should be nonzero but # pos loss and center loss should be zero empty_pos_loss = empty_gt_losses['loss_pos'].item() empty_neg_loss = empty_gt_losses['loss_neg'].item() empty_ctr_loss = empty_gt_losses['loss_center'].item() self.assertGreater(empty_neg_loss, 0, 'neg loss should be non-zero') self.assertEqual( empty_pos_loss, 0, 'there should be no pos loss when there are no true boxes') self.assertEqual( empty_ctr_loss, 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then all pos, neg loss and center loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = autoassign_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_pos_loss = one_gt_losses['loss_pos'].item() onegt_neg_loss = one_gt_losses['loss_neg'].item() onegt_ctr_loss = one_gt_losses['loss_center'].item() self.assertGreater(onegt_pos_loss, 0, 'pos loss should be non-zero') self.assertGreater(onegt_neg_loss, 0, 'neg loss should be non-zero') self.assertGreater(onegt_ctr_loss, 0, 'center loss should be non-zero')