import pytest import torch from mmdet.models.backbones.swin import SwinBlock, SwinTransformer def test_swin_block(): # test SwinBlock structure and forward block = SwinBlock(embed_dims=64, num_heads=4, feedforward_channels=256) assert block.ffn.embed_dims == 64 assert block.attn.w_msa.num_heads == 4 assert block.ffn.feedforward_channels == 256 x = torch.randn(1, 56 * 56, 64) x_out = block(x, (56, 56)) assert x_out.shape == torch.Size([1, 56 * 56, 64]) # Test BasicBlock with checkpoint forward block = SwinBlock( embed_dims=64, num_heads=4, feedforward_channels=256, with_cp=True) assert block.with_cp x = torch.randn(1, 56 * 56, 64) x_out = block(x, (56, 56)) assert x_out.shape == torch.Size([1, 56 * 56, 64]) def test_swin_transformer(): """Test Swin Transformer backbone.""" with pytest.raises(TypeError): # Pretrained arg must be str or None. SwinTransformer(pretrained=123) with pytest.raises(AssertionError): # Because swin uses non-overlapping patch embed, so the stride of patch # embed must be equal to patch size. SwinTransformer(strides=(2, 2, 2, 2), patch_size=4) # test pretrained image size with pytest.raises(AssertionError): SwinTransformer(pretrain_img_size=(224, 224, 224)) # Test absolute position embedding temp = torch.randn((1, 3, 224, 224)) model = SwinTransformer(pretrain_img_size=224, use_abs_pos_embed=True) model.init_weights() model(temp) # Test patch norm model = SwinTransformer(patch_norm=False) model(temp) # Test normal inference temp = torch.randn((1, 3, 32, 32)) model = SwinTransformer() outs = model(temp) assert outs[0].shape == (1, 96, 8, 8) assert outs[1].shape == (1, 192, 4, 4) assert outs[2].shape == (1, 384, 2, 2) assert outs[3].shape == (1, 768, 1, 1) # Test abnormal inference size temp = torch.randn((1, 3, 31, 31)) model = SwinTransformer() outs = model(temp) assert outs[0].shape == (1, 96, 8, 8) assert outs[1].shape == (1, 192, 4, 4) assert outs[2].shape == (1, 384, 2, 2) assert outs[3].shape == (1, 768, 1, 1) # Test abnormal inference size temp = torch.randn((1, 3, 112, 137)) model = SwinTransformer() outs = model(temp) assert outs[0].shape == (1, 96, 28, 35) assert outs[1].shape == (1, 192, 14, 18) assert outs[2].shape == (1, 384, 7, 9) assert outs[3].shape == (1, 768, 4, 5) model = SwinTransformer(frozen_stages=4) model.train() for p in model.parameters(): assert not p.requires_grad