# Copyright (c) OpenMMLab. All rights reserved. import datetime import logging import os import platform import warnings import cv2 import torch.multiprocessing as mp from mmengine import DefaultScope from mmengine.logging import print_log from mmengine.utils import digit_version def setup_cache_size_limit_of_dynamo(): """Setup cache size limit of dynamo. Note: Due to the dynamic shape of the loss calculation and post-processing parts in the object detection algorithm, these functions must be compiled every time they are run. Setting a large value for torch._dynamo.config.cache_size_limit may result in repeated compilation, which can slow down training and testing speed. Therefore, we need to set the default value of cache_size_limit smaller. An empirical value is 4. """ import torch if digit_version(torch.__version__) >= digit_version('2.0.0'): if 'DYNAMO_CACHE_SIZE_LIMIT' in os.environ: import torch._dynamo cache_size_limit = int(os.environ['DYNAMO_CACHE_SIZE_LIMIT']) torch._dynamo.config.cache_size_limit = cache_size_limit print_log( f'torch._dynamo.config.cache_size_limit is force ' f'set to {cache_size_limit}.', logger='current', level=logging.WARNING) def setup_multi_processes(cfg): """Setup multi-processing environment variables.""" # set multi-process start method as `fork` to speed up the training if platform.system() != 'Windows': mp_start_method = cfg.get('mp_start_method', 'fork') current_method = mp.get_start_method(allow_none=True) if current_method is not None and current_method != mp_start_method: warnings.warn( f'Multi-processing start method `{mp_start_method}` is ' f'different from the previous setting `{current_method}`.' f'It will be force set to `{mp_start_method}`. You can change ' f'this behavior by changing `mp_start_method` in your config.') mp.set_start_method(mp_start_method, force=True) # disable opencv multithreading to avoid system being overloaded opencv_num_threads = cfg.get('opencv_num_threads', 0) cv2.setNumThreads(opencv_num_threads) # setup OMP threads # This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa workers_per_gpu = cfg.data.get('workers_per_gpu', 1) if 'train_dataloader' in cfg.data: workers_per_gpu = \ max(cfg.data.train_dataloader.get('workers_per_gpu', 1), workers_per_gpu) if 'OMP_NUM_THREADS' not in os.environ and workers_per_gpu > 1: omp_num_threads = 1 warnings.warn( f'Setting OMP_NUM_THREADS environment variable for each process ' f'to be {omp_num_threads} in default, to avoid your system being ' f'overloaded, please further tune the variable for optimal ' f'performance in your application as needed.') os.environ['OMP_NUM_THREADS'] = str(omp_num_threads) # setup MKL threads if 'MKL_NUM_THREADS' not in os.environ and workers_per_gpu > 1: mkl_num_threads = 1 warnings.warn( f'Setting MKL_NUM_THREADS environment variable for each process ' f'to be {mkl_num_threads} in default, to avoid your system being ' f'overloaded, please further tune the variable for optimal ' f'performance in your application as needed.') os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads) def register_all_modules(init_default_scope: bool = True) -> None: """Register all modules in mmdet into the registries. Args: init_default_scope (bool): Whether initialize the mmdet default scope. When `init_default_scope=True`, the global default scope will be set to `mmdet`, and all registries will build modules from mmdet's registry node. To understand more about the registry, please refer to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md Defaults to True. """ # noqa import mmdet.datasets # noqa: F401,F403 import mmdet.engine # noqa: F401,F403 import mmdet.evaluation # noqa: F401,F403 import mmdet.models # noqa: F401,F403 import mmdet.visualization # noqa: F401,F403 if init_default_scope: never_created = DefaultScope.get_current_instance() is None \ or not DefaultScope.check_instance_created('mmdet') if never_created: DefaultScope.get_instance('mmdet', scope_name='mmdet') return current_scope = DefaultScope.get_current_instance() if current_scope.scope_name != 'mmdet': warnings.warn('The current default scope ' f'"{current_scope.scope_name}" is not "mmdet", ' '`register_all_modules` will force the current' 'default scope to be "mmdet". If this is not ' 'expected, please set `init_default_scope=False`.') # avoid name conflict new_instance_name = f'mmdet-{datetime.datetime.now()}' DefaultScope.get_instance(new_instance_name, scope_name='mmdet')