# Copyright (c) OpenMMLab. All rights reserved. import copy import json import os.path as osp import tempfile from collections import OrderedDict from multiprocessing import Process, Queue from typing import Dict, List, Optional, Sequence, Union import numpy as np from mmengine.evaluator import BaseMetric from mmengine.fileio import dump, get_text, load from mmengine.logging import MMLogger from scipy.sparse import csr_matrix from scipy.sparse.csgraph import maximum_bipartite_matching from mmdet.evaluation.functional.bbox_overlaps import bbox_overlaps from mmdet.registry import METRICS PERSON_CLASSES = ['background', 'person'] @METRICS.register_module() class CrowdHumanMetric(BaseMetric): """CrowdHuman evaluation metric. Evaluate Average Precision (AP), Miss Rate (MR) and Jaccard Index (JI) for detection tasks. Args: ann_file (str): Path to the annotation file. metric (str | List[str]): Metrics to be evaluated. Valid metrics include 'AP', 'MR' and 'JI'. Defaults to 'AP'. format_only (bool): Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to False. outfile_prefix (str, optional): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Defaults to None. file_client_args (dict, optional): Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None. backend_args (dict, optional): Arguments to instantiate the corresponding backend. Defaults to None. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. eval_mode (int): Select the mode of evaluate. Valid mode include 0(just body box), 1(just head box) and 2(both of them). Defaults to 0. iou_thres (float): IoU threshold. Defaults to 0.5. compare_matching_method (str, optional): Matching method to compare the detection results with the ground_truth when compute 'AP' and 'MR'.Valid method include VOC and None(CALTECH). Default to None. mr_ref (str): Different parameter selection to calculate MR. Valid ref include CALTECH_-2 and CALTECH_-4. Defaults to CALTECH_-2. num_ji_process (int): The number of processes to evaluation JI. Defaults to 10. """ default_prefix: Optional[str] = 'crowd_human' def __init__(self, ann_file: str, metric: Union[str, List[str]] = ['AP', 'MR', 'JI'], format_only: bool = False, outfile_prefix: Optional[str] = None, file_client_args: dict = None, backend_args: dict = None, collect_device: str = 'cpu', prefix: Optional[str] = None, eval_mode: int = 0, iou_thres: float = 0.5, compare_matching_method: Optional[str] = None, mr_ref: str = 'CALTECH_-2', num_ji_process: int = 10) -> None: super().__init__(collect_device=collect_device, prefix=prefix) self.ann_file = ann_file # crowdhuman evaluation metrics self.metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['MR', 'AP', 'JI'] for metric in self.metrics: if metric not in allowed_metrics: raise KeyError(f"metric should be one of 'MR', 'AP', 'JI'," f'but got {metric}.') self.format_only = format_only if self.format_only: assert outfile_prefix is not None, 'outfile_prefix must be not' 'None when format_only is True, otherwise the result files will' 'be saved to a temp directory which will be cleaned up at the end.' self.outfile_prefix = outfile_prefix self.backend_args = backend_args if file_client_args is not None: raise RuntimeError( 'The `file_client_args` is deprecated, ' 'please use `backend_args` instead, please refer to' 'https://github.com/open-mmlab/mmdetection/blob/main/configs/_base_/datasets/coco_detection.py' # noqa: E501 ) assert eval_mode in [0, 1, 2], \ "Unknown eval mode. mr_ref should be one of '0', '1', '2'." assert compare_matching_method is None or \ compare_matching_method == 'VOC', \ 'The alternative compare_matching_method is VOC.' \ 'This parameter defaults to CALTECH(None)' assert mr_ref == 'CALTECH_-2' or mr_ref == 'CALTECH_-4', \ "mr_ref should be one of 'CALTECH_-2', 'CALTECH_-4'." self.eval_mode = eval_mode self.iou_thres = iou_thres self.compare_matching_method = compare_matching_method self.mr_ref = mr_ref self.num_ji_process = num_ji_process @staticmethod def results2json(results: Sequence[dict], outfile_prefix: str) -> str: """Dump the detection results to a json file.""" result_file_path = f'{outfile_prefix}.json' bbox_json_results = [] for i, result in enumerate(results): ann, pred = result dump_dict = dict() dump_dict['ID'] = ann['ID'] dump_dict['width'] = ann['width'] dump_dict['height'] = ann['height'] dtboxes = [] bboxes = pred.tolist() for _, single_bbox in enumerate(bboxes): temp_dict = dict() x1, y1, x2, y2, score = single_bbox temp_dict['box'] = [x1, y1, x2 - x1, y2 - y1] temp_dict['score'] = score temp_dict['tag'] = 1 dtboxes.append(temp_dict) dump_dict['dtboxes'] = dtboxes bbox_json_results.append(dump_dict) dump(bbox_json_results, result_file_path) return result_file_path def process(self, data_batch: Sequence[dict], data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of data samples that contain annotations and predictions. """ for data_sample in data_samples: ann = dict() ann['ID'] = data_sample['img_id'] ann['width'] = data_sample['ori_shape'][1] ann['height'] = data_sample['ori_shape'][0] pred_bboxes = data_sample['pred_instances']['bboxes'].cpu().numpy() pred_scores = data_sample['pred_instances']['scores'].cpu().numpy() pred_bbox_scores = np.hstack( [pred_bboxes, pred_scores.reshape((-1, 1))]) self.results.append((ann, pred_bbox_scores)) def compute_metrics(self, results: list) -> Dict[str, float]: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: eval_results(Dict[str, float]): The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ logger: MMLogger = MMLogger.get_current_instance() tmp_dir = None if self.outfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() outfile_prefix = osp.join(tmp_dir.name, 'result') else: outfile_prefix = self.outfile_prefix # convert predictions to coco format and dump to json file result_file = self.results2json(results, outfile_prefix) eval_results = OrderedDict() if self.format_only: logger.info(f'results are saved in {osp.dirname(outfile_prefix)}') return eval_results # load evaluation samples eval_samples = self.load_eval_samples(result_file) if 'AP' in self.metrics or 'MR' in self.metrics: score_list = self.compare(eval_samples) gt_num = sum([eval_samples[i].gt_num for i in eval_samples]) ign_num = sum([eval_samples[i].ign_num for i in eval_samples]) gt_num = gt_num - ign_num img_num = len(eval_samples) for metric in self.metrics: logger.info(f'Evaluating {metric}...') if metric == 'AP': AP = self.eval_ap(score_list, gt_num, img_num) eval_results['mAP'] = float(f'{round(AP, 4)}') if metric == 'MR': MR = self.eval_mr(score_list, gt_num, img_num) eval_results['mMR'] = float(f'{round(MR, 4)}') if metric == 'JI': JI = self.eval_ji(eval_samples) eval_results['JI'] = float(f'{round(JI, 4)}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results def load_eval_samples(self, result_file): """Load data from annotations file and detection results. Args: result_file (str): The file path of the saved detection results. Returns: Dict[Image]: The detection result packaged by Image """ gt_str = get_text( self.ann_file, backend_args=self.backend_args).strip().split('\n') gt_records = [json.loads(line) for line in gt_str] pred_records = load(result_file, backend_args=self.backend_args) eval_samples = dict() for gt_record, pred_record in zip(gt_records, pred_records): assert gt_record['ID'] == pred_record['ID'], \ 'please set val_dataloader.sampler.shuffle=False and try again' eval_samples[pred_record['ID']] = Image(self.eval_mode) eval_samples[pred_record['ID']].load(gt_record, 'box', None, PERSON_CLASSES, True) eval_samples[pred_record['ID']].load(pred_record, 'box', None, PERSON_CLASSES, False) eval_samples[pred_record['ID']].clip_all_boader() return eval_samples def compare(self, samples): """Match the detection results with the ground_truth. Args: samples (dict[Image]): The detection result packaged by Image. Returns: score_list(list[tuple[ndarray, int, str]]): Matching result. a list of tuples (dtbox, label, imgID) in the descending sort of dtbox.score. """ score_list = list() for id in samples: if self.compare_matching_method == 'VOC': result = samples[id].compare_voc(self.iou_thres) else: result = samples[id].compare_caltech(self.iou_thres) score_list.extend(result) # In the descending sort of dtbox score. score_list.sort(key=lambda x: x[0][-1], reverse=True) return score_list @staticmethod def eval_ap(score_list, gt_num, img_num): """Evaluate by average precision. Args: score_list(list[tuple[ndarray, int, str]]): Matching result. a list of tuples (dtbox, label, imgID) in the descending sort of dtbox.score. gt_num(int): The number of gt boxes in the entire dataset. img_num(int): The number of images in the entire dataset. Returns: ap(float): result of average precision. """ # calculate general ap score def _calculate_map(_recall, _precision): assert len(_recall) == len(_precision) area = 0 for k in range(1, len(_recall)): delta_h = (_precision[k - 1] + _precision[k]) / 2 delta_w = _recall[k] - _recall[k - 1] area += delta_w * delta_h return area tp, fp = 0.0, 0.0 rpX, rpY = list(), list() fpn = [] recalln = [] thr = [] fppi = [] for i, item in enumerate(score_list): if item[1] == 1: tp += 1.0 elif item[1] == 0: fp += 1.0 fn = gt_num - tp recall = tp / (tp + fn) precision = tp / (tp + fp) rpX.append(recall) rpY.append(precision) fpn.append(fp) recalln.append(tp) thr.append(item[0][-1]) fppi.append(fp / img_num) ap = _calculate_map(rpX, rpY) return ap def eval_mr(self, score_list, gt_num, img_num): """Evaluate by Caltech-style log-average miss rate. Args: score_list(list[tuple[ndarray, int, str]]): Matching result. a list of tuples (dtbox, label, imgID) in the descending sort of dtbox.score. gt_num(int): The number of gt boxes in the entire dataset. img_num(int): The number of image in the entire dataset. Returns: mr(float): result of miss rate. """ # find greater_than def _find_gt(lst, target): for idx, _item in enumerate(lst): if _item >= target: return idx return len(lst) - 1 if self.mr_ref == 'CALTECH_-2': # CALTECH_MRREF_2: anchor points (from 10^-2 to 1) as in # P.Dollar's paper ref = [ 0.0100, 0.0178, 0.03160, 0.0562, 0.1000, 0.1778, 0.3162, 0.5623, 1.000 ] else: # CALTECH_MRREF_4: anchor points (from 10^-4 to 1) as in # S.Zhang's paper ref = [ 0.0001, 0.0003, 0.00100, 0.0032, 0.0100, 0.0316, 0.1000, 0.3162, 1.000 ] tp, fp = 0.0, 0.0 fppiX, fppiY = list(), list() for i, item in enumerate(score_list): if item[1] == 1: tp += 1.0 elif item[1] == 0: fp += 1.0 fn = gt_num - tp recall = tp / (tp + fn) missrate = 1.0 - recall fppi = fp / img_num fppiX.append(fppi) fppiY.append(missrate) score = list() for pos in ref: argmin = _find_gt(fppiX, pos) if argmin >= 0: score.append(fppiY[argmin]) score = np.array(score) mr = np.exp(np.log(score).mean()) return mr def eval_ji(self, samples): """Evaluate by JI using multi_process. Args: samples(Dict[str, Image]): The detection result packaged by Image. Returns: ji(float): result of jaccard index. """ import math res_line = [] res_ji = [] for i in range(10): score_thr = 1e-1 * i total = len(samples) stride = math.ceil(total / self.num_ji_process) result_queue = Queue(10000) results, procs = [], [] records = list(samples.items()) for i in range(self.num_ji_process): start = i * stride end = np.min([start + stride, total]) sample_data = dict(records[start:end]) p = Process( target=self.compute_ji_with_ignore, args=(result_queue, sample_data, score_thr)) p.start() procs.append(p) for i in range(total): t = result_queue.get() results.append(t) for p in procs: p.join() line, mean_ratio = self.gather(results) line = 'score_thr:{:.1f}, {}'.format(score_thr, line) res_line.append(line) res_ji.append(mean_ratio) return max(res_ji) def compute_ji_with_ignore(self, result_queue, dt_result, score_thr): """Compute JI with ignore. Args: result_queue(Queue): The Queue for save compute result when multi_process. dt_result(dict[Image]): Detection result packaged by Image. score_thr(float): The threshold of detection score. Returns: dict: compute result. """ for ID, record in dt_result.items(): gt_boxes = record.gt_boxes dt_boxes = record.dt_boxes keep = dt_boxes[:, -1] > score_thr dt_boxes = dt_boxes[keep][:, :-1] gt_tag = np.array(gt_boxes[:, -1] != -1) matches = self.compute_ji_matching(dt_boxes, gt_boxes[gt_tag, :4]) # get the unmatched_indices matched_indices = np.array([j for (j, _) in matches]) unmatched_indices = list( set(np.arange(dt_boxes.shape[0])) - set(matched_indices)) num_ignore_dt = self.get_ignores(dt_boxes[unmatched_indices], gt_boxes[~gt_tag, :4]) matched_indices = np.array([j for (_, j) in matches]) unmatched_indices = list( set(np.arange(gt_boxes[gt_tag].shape[0])) - set(matched_indices)) num_ignore_gt = self.get_ignores( gt_boxes[gt_tag][unmatched_indices], gt_boxes[~gt_tag, :4]) # compute results eps = 1e-6 k = len(matches) m = gt_tag.sum() - num_ignore_gt n = dt_boxes.shape[0] - num_ignore_dt ratio = k / (m + n - k + eps) recall = k / (m + eps) cover = k / (n + eps) noise = 1 - cover result_dict = dict( ratio=ratio, recall=recall, cover=cover, noise=noise, k=k, m=m, n=n) result_queue.put_nowait(result_dict) @staticmethod def gather(results): """Integrate test results.""" assert len(results) img_num = 0 for result in results: if result['n'] != 0 or result['m'] != 0: img_num += 1 mean_ratio = np.sum([rb['ratio'] for rb in results]) / img_num valids = np.sum([rb['k'] for rb in results]) total = np.sum([rb['n'] for rb in results]) gtn = np.sum([rb['m'] for rb in results]) line = 'mean_ratio:{:.4f}, valids:{}, total:{}, gtn:{}'\ .format(mean_ratio, valids, total, gtn) return line, mean_ratio def compute_ji_matching(self, dt_boxes, gt_boxes): """Match the annotation box for each detection box. Args: dt_boxes(ndarray): Detection boxes. gt_boxes(ndarray): Ground_truth boxes. Returns: matches_(list[tuple[int, int]]): Match result. """ assert dt_boxes.shape[-1] > 3 and gt_boxes.shape[-1] > 3 if dt_boxes.shape[0] < 1 or gt_boxes.shape[0] < 1: return list() ious = bbox_overlaps(dt_boxes, gt_boxes, mode='iou') input_ = copy.deepcopy(ious) input_[input_ < self.iou_thres] = 0 match_scipy = maximum_bipartite_matching( csr_matrix(input_), perm_type='column') matches_ = [] for i in range(len(match_scipy)): if match_scipy[i] != -1: matches_.append((i, int(match_scipy[i]))) return matches_ def get_ignores(self, dt_boxes, gt_boxes): """Get the number of ignore bboxes.""" if gt_boxes.size: ioas = bbox_overlaps(dt_boxes, gt_boxes, mode='iof') ioas = np.max(ioas, axis=1) rows = np.where(ioas > self.iou_thres)[0] return len(rows) else: return 0 class Image(object): """Data structure for evaluation of CrowdHuman. Note: This implementation is modified from https://github.com/Purkialo/ CrowdDet/blob/master/lib/evaluate/APMRToolkits/image.py Args: mode (int): Select the mode of evaluate. Valid mode include 0(just body box), 1(just head box) and 2(both of them). Defaults to 0. """ def __init__(self, mode): self.ID = None self.width = None self.height = None self.dt_boxes = None self.gt_boxes = None self.eval_mode = mode self.ign_num = None self.gt_num = None self.dt_num = None def load(self, record, body_key, head_key, class_names, gt_flag): """Loading information for evaluation. Args: record (dict): Label information or test results. The format might look something like this: { 'ID': '273271,c9db000d5146c15', 'gtboxes': [ {'fbox': [72, 202, 163, 503], 'tag': 'person', ...}, {'fbox': [199, 180, 144, 499], 'tag': 'person', ...}, ... ] } or: { 'ID': '273271,c9db000d5146c15', 'width': 800, 'height': 1067, 'dtboxes': [ { 'box': [306.22, 205.95, 164.05, 394.04], 'score': 0.99, 'tag': 1 }, { 'box': [403.60, 178.66, 157.15, 421.33], 'score': 0.99, 'tag': 1 }, ... ] } body_key (str, None): key of detection body box. Valid when loading detection results and self.eval_mode!=1. head_key (str, None): key of detection head box. Valid when loading detection results and self.eval_mode!=0. class_names (list[str]):class names of data set. Defaults to ['background', 'person']. gt_flag (bool): Indicate whether record is ground truth or predicting the outcome. """ if 'ID' in record and self.ID is None: self.ID = record['ID'] if 'width' in record and self.width is None: self.width = record['width'] if 'height' in record and self.height is None: self.height = record['height'] if gt_flag: self.gt_num = len(record['gtboxes']) body_bbox, head_bbox = self.load_gt_boxes(record, 'gtboxes', class_names) if self.eval_mode == 0: self.gt_boxes = body_bbox self.ign_num = (body_bbox[:, -1] == -1).sum() elif self.eval_mode == 1: self.gt_boxes = head_bbox self.ign_num = (head_bbox[:, -1] == -1).sum() else: gt_tag = np.array([ body_bbox[i, -1] != -1 and head_bbox[i, -1] != -1 for i in range(len(body_bbox)) ]) self.ign_num = (gt_tag == 0).sum() self.gt_boxes = np.hstack( (body_bbox[:, :-1], head_bbox[:, :-1], gt_tag.reshape(-1, 1))) if not gt_flag: self.dt_num = len(record['dtboxes']) if self.eval_mode == 0: self.dt_boxes = self.load_det_boxes(record, 'dtboxes', body_key, 'score') elif self.eval_mode == 1: self.dt_boxes = self.load_det_boxes(record, 'dtboxes', head_key, 'score') else: body_dtboxes = self.load_det_boxes(record, 'dtboxes', body_key, 'score') head_dtboxes = self.load_det_boxes(record, 'dtboxes', head_key, 'score') self.dt_boxes = np.hstack((body_dtboxes, head_dtboxes)) @staticmethod def load_gt_boxes(dict_input, key_name, class_names): """load ground_truth and transform [x, y, w, h] to [x1, y1, x2, y2]""" assert key_name in dict_input if len(dict_input[key_name]) < 1: return np.empty([0, 5]) head_bbox = [] body_bbox = [] for rb in dict_input[key_name]: if rb['tag'] in class_names: body_tag = class_names.index(rb['tag']) head_tag = copy.deepcopy(body_tag) else: body_tag = -1 head_tag = -1 if 'extra' in rb: if 'ignore' in rb['extra']: if rb['extra']['ignore'] != 0: body_tag = -1 head_tag = -1 if 'head_attr' in rb: if 'ignore' in rb['head_attr']: if rb['head_attr']['ignore'] != 0: head_tag = -1 head_bbox.append(np.hstack((rb['hbox'], head_tag))) body_bbox.append(np.hstack((rb['fbox'], body_tag))) head_bbox = np.array(head_bbox) head_bbox[:, 2:4] += head_bbox[:, :2] body_bbox = np.array(body_bbox) body_bbox[:, 2:4] += body_bbox[:, :2] return body_bbox, head_bbox @staticmethod def load_det_boxes(dict_input, key_name, key_box, key_score, key_tag=None): """load detection boxes.""" assert key_name in dict_input if len(dict_input[key_name]) < 1: return np.empty([0, 5]) else: assert key_box in dict_input[key_name][0] if key_score: assert key_score in dict_input[key_name][0] if key_tag: assert key_tag in dict_input[key_name][0] if key_score: if key_tag: bboxes = np.vstack([ np.hstack((rb[key_box], rb[key_score], rb[key_tag])) for rb in dict_input[key_name] ]) else: bboxes = np.vstack([ np.hstack((rb[key_box], rb[key_score])) for rb in dict_input[key_name] ]) else: if key_tag: bboxes = np.vstack([ np.hstack((rb[key_box], rb[key_tag])) for rb in dict_input[key_name] ]) else: bboxes = np.vstack( [rb[key_box] for rb in dict_input[key_name]]) bboxes[:, 2:4] += bboxes[:, :2] return bboxes def clip_all_boader(self): """Make sure boxes are within the image range.""" def _clip_boundary(boxes, height, width): assert boxes.shape[-1] >= 4 boxes[:, 0] = np.minimum(np.maximum(boxes[:, 0], 0), width - 1) boxes[:, 1] = np.minimum(np.maximum(boxes[:, 1], 0), height - 1) boxes[:, 2] = np.maximum(np.minimum(boxes[:, 2], width), 0) boxes[:, 3] = np.maximum(np.minimum(boxes[:, 3], height), 0) return boxes assert self.dt_boxes.shape[-1] >= 4 assert self.gt_boxes.shape[-1] >= 4 assert self.width is not None and self.height is not None if self.eval_mode == 2: self.dt_boxes[:, :4] = _clip_boundary(self.dt_boxes[:, :4], self.height, self.width) self.gt_boxes[:, :4] = _clip_boundary(self.gt_boxes[:, :4], self.height, self.width) self.dt_boxes[:, 4:8] = _clip_boundary(self.dt_boxes[:, 4:8], self.height, self.width) self.gt_boxes[:, 4:8] = _clip_boundary(self.gt_boxes[:, 4:8], self.height, self.width) else: self.dt_boxes = _clip_boundary(self.dt_boxes, self.height, self.width) self.gt_boxes = _clip_boundary(self.gt_boxes, self.height, self.width) def compare_voc(self, thres): """Match the detection results with the ground_truth by VOC. Args: thres (float): IOU threshold. Returns: score_list(list[tuple[ndarray, int, str]]): Matching result. a list of tuples (dtbox, label, imgID) in the descending sort of dtbox.score. """ if self.dt_boxes is None: return list() dtboxes = self.dt_boxes gtboxes = self.gt_boxes if self.gt_boxes is not None else list() dtboxes.sort(key=lambda x: x.score, reverse=True) gtboxes.sort(key=lambda x: x.ign) score_list = list() for i, dt in enumerate(dtboxes): maxpos = -1 maxiou = thres for j, gt in enumerate(gtboxes): overlap = dt.iou(gt) if overlap > maxiou: maxiou = overlap maxpos = j if maxpos >= 0: if gtboxes[maxpos].ign == 0: gtboxes[maxpos].matched = 1 dtboxes[i].matched = 1 score_list.append((dt, self.ID)) else: dtboxes[i].matched = -1 else: dtboxes[i].matched = 0 score_list.append((dt, self.ID)) return score_list def compare_caltech(self, thres): """Match the detection results with the ground_truth by Caltech matching strategy. Args: thres (float): IOU threshold. Returns: score_list(list[tuple[ndarray, int, str]]): Matching result. a list of tuples (dtbox, label, imgID) in the descending sort of dtbox.score. """ if self.dt_boxes is None or self.gt_boxes is None: return list() dtboxes = self.dt_boxes if self.dt_boxes is not None else list() gtboxes = self.gt_boxes if self.gt_boxes is not None else list() dt_matched = np.zeros(dtboxes.shape[0]) gt_matched = np.zeros(gtboxes.shape[0]) dtboxes = np.array(sorted(dtboxes, key=lambda x: x[-1], reverse=True)) gtboxes = np.array(sorted(gtboxes, key=lambda x: x[-1], reverse=True)) if len(dtboxes): overlap_iou = bbox_overlaps(dtboxes, gtboxes, mode='iou') overlap_ioa = bbox_overlaps(dtboxes, gtboxes, mode='iof') else: return list() score_list = list() for i, dt in enumerate(dtboxes): maxpos = -1 maxiou = thres for j, gt in enumerate(gtboxes): if gt_matched[j] == 1: continue if gt[-1] > 0: overlap = overlap_iou[i][j] if overlap > maxiou: maxiou = overlap maxpos = j else: if maxpos >= 0: break else: overlap = overlap_ioa[i][j] if overlap > thres: maxiou = overlap maxpos = j if maxpos >= 0: if gtboxes[maxpos, -1] > 0: gt_matched[maxpos] = 1 dt_matched[i] = 1 score_list.append((dt, 1, self.ID)) else: dt_matched[i] = -1 else: dt_matched[i] = 0 score_list.append((dt, 0, self.ID)) return score_list