_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='VFNet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='VFNetHead', num_classes=80, in_channels=256, stacked_convs=3, feat_channels=256, strides=[8, 16, 32, 64, 128], center_sampling=False, dcn_on_last_conv=False, use_atss=True, use_vfl=True, loss_cls=dict( type='VarifocalLoss', use_sigmoid=True, alpha=0.75, gamma=2.0, iou_weighted=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.5), loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # data setting train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( optimizer=dict(lr=0.01), paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), clip_grad=None) # learning rate max_epochs = 12 param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)