Collections: - Name: RetinaNet Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - Focal Loss - FPN - ResNet Paper: URL: https://arxiv.org/abs/1708.02002 Title: "Focal Loss for Dense Object Detection" README: configs/retinanet/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/retinanet.py#L6 Version: v2.0.0 Models: - Name: retinanet_r18_fpn_1x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r18_fpn_1x_coco.py Metadata: Training Memory (GB): 1.7 Training Resources: 8x V100 GPUs Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 31.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r18_fpn_1x_coco/retinanet_r18_fpn_1x_coco_20220407_171055-614fd399.pth - Name: retinanet_r18_fpn_1xb8-1x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r18_fpn_1xb8-1x_coco.py Metadata: Training Memory (GB): 5.0 Training Resources: 1x V100 GPUs Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 31.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r18_fpn_1x8_1x_coco/retinanet_r18_fpn_1x8_1x_coco_20220407_171255-4ea310d7.pth - Name: retinanet_r50-caffe_fpn_1x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r50-caffe_fpn_1x_coco.py Metadata: Training Memory (GB): 3.5 inference time (ms/im): - value: 53.76 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 36.3 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531-f11027c5.pth - Name: retinanet_r50_fpn_1x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r50_fpn_1x_coco.py Metadata: Training Memory (GB): 3.8 inference time (ms/im): - value: 52.63 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 36.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth - Name: retinanet_r50_fpn_amp-1x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r50_fpn_amp-1x_coco.py Metadata: Training Memory (GB): 2.8 Training Techniques: - SGD with Momentum - Weight Decay - Mixed Precision Training inference time (ms/im): - value: 31.65 hardware: V100 backend: PyTorch batch size: 1 mode: FP16 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 36.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702-0dbfb212.pth - Name: retinanet_r50_fpn_2x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r50_fpn_2x_coco.py Metadata: Epochs: 24 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 37.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131-fdb43119.pth - Name: retinanet_r50_fpn_ms-640-800-3x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r50_fpn_ms-640-800-3x_coco.py Metadata: Epochs: 36 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 39.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_mstrain_3x_coco/retinanet_r50_fpn_mstrain_3x_coco_20210718_220633-88476508.pth - Name: retinanet_r101-caffe_fpn_1x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r101-caffe_fpn_1x_coco.py Metadata: Training Memory (GB): 5.5 inference time (ms/im): - value: 68.03 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531-b428fa0f.pth - Name: retinanet_r101-caffe_fpn_ms-3x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r101-caffe_fpn_ms-3x_coco.py Metadata: Epochs: 36 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 40.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_mstrain_3x_coco/retinanet_r101_caffe_fpn_mstrain_3x_coco_20210721_063439-88a8a944.pth - Name: retinanet_r101_fpn_1x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r101_fpn_1x_coco.py Metadata: Training Memory (GB): 5.7 inference time (ms/im): - value: 66.67 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130-7a93545f.pth - Name: retinanet_r101_fpn_2x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r101_fpn_2x_coco.py Metadata: Training Memory (GB): 5.7 inference time (ms/im): - value: 66.67 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 38.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131-5560aee8.pth - Name: retinanet_r101_fpn_ms-640-800-3x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_r101_fpn_ms-640-800-3x_coco.py Metadata: Epochs: 36 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_mstrain_3x_coco/retinanet_r101_fpn_mstrain_3x_coco_20210720_214650-7ee888e0.pth - Name: retinanet_x101-32x4d_fpn_1x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_x101-32x4d_fpn_1x_coco.py Metadata: Training Memory (GB): 7.0 inference time (ms/im): - value: 82.64 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 39.9 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130-5c8b7ec4.pth - Name: retinanet_x101-32x4d_fpn_2x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_x101-32x4d_fpn_2x_coco.py Metadata: Training Memory (GB): 7.0 inference time (ms/im): - value: 82.64 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 40.1 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131-237fc5e1.pth - Name: retinanet_x101-64x4d_fpn_1x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_x101-64x4d_fpn_1x_coco.py Metadata: Training Memory (GB): 10.0 inference time (ms/im): - value: 114.94 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.0 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130-366f5af1.pth - Name: retinanet_x101-64x4d_fpn_2x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_x101-64x4d_fpn_2x_coco.py Metadata: Training Memory (GB): 10.0 inference time (ms/im): - value: 114.94 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 24 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 40.8 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth - Name: retinanet_x101-64x4d_fpn_ms-640-800-3x_coco In Collection: RetinaNet Config: configs/retinanet/retinanet_x101-64x4d_fpn_ms-640-800-3x_coco.py Metadata: Epochs: 36 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.6 Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_mstrain_3x_coco/retinanet_x101_64x4d_fpn_mstrain_3x_coco_20210719_051838-022c2187.pth