_base_ = './retinanet_regnetx-3.2GF_fpn_1x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_1.6gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')), neck=dict( type='FPN', in_channels=[72, 168, 408, 912], out_channels=256, num_outs=5))