_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/openimages_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=601))) # Using 32 GPUS while training optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001), clip_grad=dict(max_norm=35, norm_type=2)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 64, by_epoch=False, begin=0, end=26000), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)