_base_ = ['./mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( pretrain_img_size=384, embed_dims=128, depths=depths, num_heads=[4, 8, 16, 32], window_size=12, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict(in_channels=[128, 256, 512, 1024])) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optim_wrapper = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))