_base_ = '../fast_rcnn/fast-rcnn_r50_fpn_1x_coco.py' # model settings model = dict( neck=[ dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), dict( type='BFP', in_channels=256, num_levels=5, refine_level=2, refine_type='non_local') ], roi_head=dict( bbox_head=dict( loss_bbox=dict( _delete_=True, type='BalancedL1Loss', alpha=0.5, gamma=1.5, beta=1.0, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rcnn=dict( sampler=dict( _delete_=True, type='CombinedSampler', num=512, pos_fraction=0.25, add_gt_as_proposals=True, pos_sampler=dict(type='InstanceBalancedPosSampler'), neg_sampler=dict( type='IoUBalancedNegSampler', floor_thr=-1, floor_fraction=0, num_bins=3))))) # MMEngine support the following two ways, users can choose # according to convenience # _base_.train_dataloader.dataset.proposal_file = 'libra_proposals/rpn_r50_fpn_1x_train2017.pkl' # noqa train_dataloader = dict( dataset=dict(proposal_file='libra_proposals/rpn_r50_fpn_1x_train2017.pkl')) # _base_.val_dataloader.dataset.proposal_file = 'libra_proposals/rpn_r50_fpn_1x_val2017.pkl' # noqa # test_dataloader = _base_.val_dataloader val_dataloader = dict( dataset=dict(proposal_file='libra_proposals/rpn_r50_fpn_1x_val2017.pkl')) test_dataloader = val_dataloader