Collections: - Name: HTC Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - FPN - HTC - RPN - ResNet - ResNeXt - RoIAlign Paper: URL: https://arxiv.org/abs/1901.07518 Title: 'Hybrid Task Cascade for Instance Segmentation' README: configs/htc/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/htc.py#L6 Version: v2.0.0 Models: - Name: htc_r50_fpn_1x_coco In Collection: HTC Config: configs/htc/htc_r50_fpn_1x_coco.py Metadata: Training Memory (GB): 8.2 inference time (ms/im): - value: 172.41 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 42.3 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 37.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_1x_coco/htc_r50_fpn_1x_coco_20200317-7332cf16.pth - Name: htc_r50_fpn_20e_coco In Collection: HTC Config: configs/htc/htc_r50_fpn_20e_coco.py Metadata: Training Memory (GB): 8.2 inference time (ms/im): - value: 172.41 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 43.3 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 38.3 Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_20e_coco/htc_r50_fpn_20e_coco_20200319-fe28c577.pth - Name: htc_r101_fpn_20e_coco In Collection: HTC Config: configs/htc/htc_r101_fpn_20e_coco.py Metadata: Training Memory (GB): 10.2 inference time (ms/im): - value: 181.82 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 44.8 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 39.6 Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r101_fpn_20e_coco/htc_r101_fpn_20e_coco_20200317-9b41b48f.pth - Name: htc_x101-32x4d_fpn_16xb1-20e_coco In Collection: HTC Config: configs/htc/htc_x101-32x4d_fpn_16xb1-20e_coco.py Metadata: Training Resources: 16x V100 GPUs Batch Size: 16 Training Memory (GB): 11.4 inference time (ms/im): - value: 200 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 46.1 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 40.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_32x4d_fpn_16x1_20e_coco/htc_x101_32x4d_fpn_16x1_20e_coco_20200318-de97ae01.pth - Name: htc_x101-64x4d_fpn_16xb1-20e_coco In Collection: HTC Config: configs/htc/htc_x101-64x4d_fpn_16xb1-20e_coco.py Metadata: Training Resources: 16x V100 GPUs Batch Size: 16 Training Memory (GB): 14.5 inference time (ms/im): - value: 227.27 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 20 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 47.0 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 41.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_16x1_20e_coco/htc_x101_64x4d_fpn_16x1_20e_coco_20200318-b181fd7a.pth - Name: htc_x101-64x4d-dconv-c3-c5_fpn_ms-400-1400-16xb1-20e_coco In Collection: HTC Config: configs/htc/htc_x101-64x4d-dconv-c3-c5_fpn_ms-400-1400-16xb1-20e_coco.py Metadata: Training Resources: 16x V100 GPUs Batch Size: 16 Epochs: 20 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 50.4 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 43.8 Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco_20200312-946fd751.pth