_base_ = './htc-without-semantic_r50_fpn_1x_coco.py' model = dict( data_preprocessor=dict(pad_seg=True), roi_head=dict( semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, seg_scale_factor=1 / 8, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2)))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict( dataset=dict( data_prefix=dict(img='train2017/', seg='stuffthingmaps/train2017/'), pipeline=train_pipeline))