_base_ = '../gcnet/mask-rcnn_r50-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py' # model settings model = dict( roi_head=dict( bbox_roi_extractor=dict( type='GenericRoIExtractor', aggregation='sum', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2), out_channels=256, featmap_strides=[4, 8, 16, 32], pre_cfg=dict( type='ConvModule', in_channels=256, out_channels=256, kernel_size=5, padding=2, inplace=False, ), post_cfg=dict( type='GeneralizedAttention', in_channels=256, spatial_range=-1, num_heads=6, attention_type='0100', kv_stride=2)), mask_roi_extractor=dict( type='GenericRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2), out_channels=256, featmap_strides=[4, 8, 16, 32], pre_cfg=dict( type='ConvModule', in_channels=256, out_channels=256, kernel_size=5, padding=2, inplace=False, ), post_cfg=dict( type='GeneralizedAttention', in_channels=256, spatial_range=-1, num_heads=6, attention_type='0100', kv_stride=2))))