Collections: - Name: GHM Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - GHM-C - GHM-R - FPN - ResNet Paper: URL: https://arxiv.org/abs/1811.05181 Title: 'Gradient Harmonized Single-stage Detector' README: configs/ghm/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/losses/ghm_loss.py#L21 Version: v2.0.0 Models: - Name: retinanet_r50_fpn_ghm-1x_coco In Collection: GHM Config: configs/ghm/retinanet_r50_fpn_ghm-1x_coco.py Metadata: Training Memory (GB): 4.0 inference time (ms/im): - value: 303.03 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 37.0 Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r50_fpn_1x_coco/retinanet_ghm_r50_fpn_1x_coco_20200130-a437fda3.pth - Name: retinanet_r101_fpn_ghm-1x_coco In Collection: GHM Config: configs/ghm/retinanet_r101_fpn_ghm-1x_coco.py Metadata: Training Memory (GB): 6.0 inference time (ms/im): - value: 227.27 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 39.1 Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r101_fpn_1x_coco/retinanet_ghm_r101_fpn_1x_coco_20200130-c148ee8f.pth - Name: retinanet_x101-32x4d_fpn_ghm-1x_coco In Collection: GHM Config: configs/ghm/retinanet_x101-32x4d_fpn_ghm-1x_coco.py Metadata: Training Memory (GB): 7.2 inference time (ms/im): - value: 196.08 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 40.7 Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco/retinanet_ghm_x101_32x4d_fpn_1x_coco_20200131-e4333bd0.pth - Name: retinanet_x101-64x4d_fpn_ghm-1x_coco In Collection: GHM Config: configs/ghm/retinanet_x101-64x4d_fpn_ghm-1x_coco.py Metadata: Training Memory (GB): 10.3 inference time (ms/im): - value: 192.31 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco/retinanet_ghm_x101_64x4d_fpn_1x_coco_20200131-dd381cef.pth