# This is different from the TTA of official CenterNet. tta_model = dict( type='DetTTAModel', tta_cfg=dict(nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) tta_pipeline = [ dict(type='LoadImageFromFile', to_float32=True, backend_args=None), dict( type='TestTimeAug', transforms=[ [ # ``RandomFlip`` must be placed before ``RandomCenterCropPad``, # otherwise bounding box coordinates after flipping cannot be # recovered correctly. dict(type='RandomFlip', prob=1.), dict(type='RandomFlip', prob=0.) ], [ dict( type='RandomCenterCropPad', ratios=None, border=None, mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True, test_mode=True, test_pad_mode=['logical_or', 31], test_pad_add_pix=1), ], [dict(type='LoadAnnotations', with_bbox=True)], [ dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', 'flip_direction', 'border')) ] ]) ]