_base_ = [ '../_base_/models/cascade-rcnn_r50_fpn.py', '../common/lsj-200e_coco-detection.py' ] image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] # disable allowed_border to avoid potential errors. model = dict( data_preprocessor=dict(batch_augments=batch_augments), train_cfg=dict(rpn=dict(allowed_border=-1))) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.02 * 4, momentum=0.9, weight_decay=0.00004)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)