Collections: - Name: ATSS Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - ATSS - FPN - ResNet Paper: URL: https://arxiv.org/abs/1912.02424 Title: 'Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection' README: configs/atss/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/atss.py#L6 Version: v2.0.0 Models: - Name: atss_r50_fpn_1x_coco In Collection: ATSS Config: configs/atss/atss_r50_fpn_1x_coco.py Metadata: Training Memory (GB): 3.7 inference time (ms/im): - value: 50.76 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 39.4 Weights: https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209-985f7bd0.pth - Name: atss_r101_fpn_1x_coco In Collection: ATSS Config: configs/atss/atss_r101_fpn_1x_coco.py Metadata: Training Memory (GB): 5.6 inference time (ms/im): - value: 81.3 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (800, 1333) Epochs: 12 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.5 Weights: https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.pth